Пируват из аминокислот

Пируват из аминокислот

Лекция 15

Метаболизм аминокислот

Деградация протеиногенных аминокислот. Глюкогенные и кетогенные аминокислоты. Метаболизм аминокислот, образующих пируват,оксалоацетат, фумарат и 2-оксоглутарат. Цикл мочевины.

Деградация протеиногенных аминокислот.

В результате деградации 20 протеиногенных аминокислот их углеродные скелеты превращаются в итоге в семь различных продуктов деградации:

1. Пировиноградная кислота – глицин, аланин, серин, цистеин, треонин,

2. Щавелевоуксусная кислота – аспарагин, аспарагиновая кислота.

3. Фумаровая кислота – фенилаланин, тирозин.

4. Сукцинил-КоА – изолейцин, Валин.

5. 2-Оксоглутаровая кислота – глутаминовая кислота, глутамин, гистидин,

6. Ацетил-КоА – лейцин, лизин; изолейцин.

7. Ацетоуксусная кислота – лейцин, лизин, фенилаланин, тирозин, триптофан.

Пять первых метаболитов:пируват, оксалоацетат, фумарат, сукцинил-КоА и 2-оксоглутарат служат предшественниками в процессе глюконеогенеза. Четыре последних являются еще и промежуточными продуктами цитратного цикла, в то время как пируват может быть переведен в оксалоацетат и тем самым стать участником глюконеогенеза.

Аминокислоты, деградация которых поставляет один из пяти упомянутых метаболитов, называются глюкогенными аминокислотами.За двумя исключениями (лизин и лейцин) глюкогенными являются все белковые аминокислоты.

Два других продукта распада: ацетил-КоА и ацетоацетат не могут включаться в глюконеогенез в организме животных. Они используются для синтеза кетоновых тел, жирных кислот и изопреноидов.

Поэтому аминокислоты, которые разрушаются с образованием ацетил-КоА или ацетоацетата, называются кетогенными аминокислотами.Фактически кетогенньми являются только лейцин и лизин. Некоторые аминокислоты поставляют продукты деградации, являющиеся глюкогенами и кетогенами.

К этой группе принадлежат фенилаланин, тирозин, триптофан и изолейцин. Рассмотрим метаболизм отдельных аминокислот.

1. Метаболизм аминокислот, образующихпируват.

Глицин, серин и треонинмогут превращаться друг в друга, поэтому их метаболизм мы рассмотрим в совокупности. Треонин в результате ретроальдольной реакции расщепляется обратимо на глицин и ацетальдегид. Из глицина в результате окислительного дезаминирования и декарбоксилирования образуется формальдегид, который вступает в альдольную конденсацию со второй молекулой глицина и дает серин. Серин в результате в результате ретроальдольной реакции может образовать глицин.

Кроме взаимопревращений глицина, серина и треонина, конечным продуктом которых является пируват, глицин реагирует с аминокислотой аргинином с образованием двух новых аминокислот – орнитина и гуанидилуксусной кислоты.

Орнитин метаболит цикла мочевины – процесса удаления аммиака из организма животных и человека. Из гуанидилуксусной кислоты при взаимодействии ее с активированным метионином образуется креатин — важный метаболит мышечной ткани. Активированный метионин получается при взаимодействии метионина с АТФ.

Креатин синтезируется в печени, почках, поджелудочной железе и накапливается в мышцах. В клетках мышц в спокойном состоянии из креатина при взаимодействии с АТФ образуется креатинфосфат, выполняющий роль «резерва мышечного высокоэргического фосфата».

Процесс сокращения мышц связан с потреблением АТФ, внутриклеточный запас которого исчерпывается через 1 секунду после стимуляции мышцы. Быстрая регенерация АТФ достигается различными путями, главным из которых является перенос фосфатной группы с креатинфосфата на АДФ.

Креатин в мышцах медленно неферментативно циклизуется с отщеплением воды в креатинин, который поступает в почки и выводится из организма. Таким образом наличие креатинфосфата в клетках мышечной ткани определяет тонус мышц (предложены кремы с креатином и креатинфофатом для поддержания тонуса кожи; целесообразно рекомендовать аргинин в качестве БАД, поскольку именно содержанием аргинина лимитирован синтез креатина).

Метаболизм аланина и триптофана

Аланин превращается в пируват в результате трех следующих реакций:

Ферменты катализирующие эти реакции называютс соответственно 1. Аланинтрансаминаза, 2. Аланиндегидрогеназа, 3. Оксидаза L-α-аминокислот.

Триптофан метаболизируется по 4 направлениям. Три из них связаны с реакциями окисления. Непосредственное гидролитическое расщепление трипофана приводит к образованию пирувата, индола и аммиака.

Второе направление, приводящее к образованию пирувата, начинается с окисления триптофана кислородом, катализирумое триптофан-2,3-оксидазой. При этом расщепляется пирольный цикл триптофана по связи 2-3 с образованием L-N-формилкинуренина, который гидролизуется с образованием кинуренина и формиата. Кинуренин далее гидролизуется по связи СО-СН2 с образованием антраниловой кислоты и аланина. Аланин далее превращается в пируват как рассмотрено ранее.

Кинуренин циклизуется и окисляется под действием НАД + и превращается в кинуреновую кислоту.

Из антраниловой кислоты через 6 стадий образуется НАД + . Сначала под действием антранилат-3-монооксигеназы она окисляется до 3-оксиантраниловой кислоты, которая окисляется далее кислородом под действием соответствующей оксидазы до 3-акролеиласпартата с размыканием бензольного кольца.

Этот метаболит далее циклизуется в производное пиридина – 2,3-дикарбоксипиридин (хинолиновая кислота, называется так потому, что получается при окислении хинолина). Хинолиновая кислота конденсируется с фосфорибозилпирофосфатом (ФРПФ) и продукт коденсации легко декарбоксилируется неферментативно с образованием рибонуклеотида никотиновой кислоты. После взаимодействия последнего с АТФ и затем с глутамином образуется НАД + .

Еще одно направление окисления триптофана имеет большое значение для организма человека. Это образование нейромедиатора серотонина, недостаток которого в организме обуславливает развитие депрессии.

И последнее направление окисления реализуется в растениях. В верхушках растущих побегов образуется индолилуксусная кислота – гетероауксин – стимулятор роста растений.

Метаболизм цистеина и метионина.

Цистеин обратимо окисляется НАД + под действием цистеиндегидрогеназы в цистин.

При окислении цистеина кислородом при катализе цистеиноксидазой образуется цистеинсульфиновая кислота, из которой получаются пируват и другие метаболиты (конечный метаболит – таурин выводится из организма. Таурин применяется как лекарственное средство для профилактики развития катаракты под названием тауфон).

Метиониниграет в организме очень важную роль. Из него образуется активированный метионин, который является унивепсальным метилирующим агентом в организме человека. Как он образуется из метионина и используется для синтеза креатина мы уже рассмотрели выше. Для примера рассмотрим еще синтез гормона адреналина и последующие превращения образующегося в синтезе гомоцистеина. Гомоцистеин конденсируется с серином с отщеплением воды и образованием цистатиона. Последний распадается на цистеин и α-кетомасляную кислоту.

Таким образом метионин после участия в процессах метилирования превращается в цистеин, который образует пируват.

Метаболизм аминокислот, образующих оксалоацетат.

Щавелевоуксусную кислоту образуют две аминокислоты – аспарагин и аспарагиновая кислота. Обе кислоты подвергаются окислительному дезаминированию и гидролизу и образуют оксалоацетат. Кроме того аспарагиновая кислота после восстановления фосфорилирования и перегруппировки дает треонин.

Читайте также:  Аденон инструкция по применению

Глюконеогенез — процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки. На долю мозга при голодании приходится большая часть потребности организма в глюкозе. Это объясняется тем, что клетки мозга не способны, в отличие от других тканей, обеспечивать потребности в энергии за счёт окисления жирных кислот .Кроме мозга, в глюкозе нуждаются ткани и клетки, в которых аэробный путь распада невозможен или ограничен, например эритроциты (они лишены митохондрий), клетки сетчатки, мозгового слоя надпочечников и др. Первичные субстраты глюконеогенеза — лактат, аминокислоты и глицерол. Включение этих субстратов в глюконеогенез зависит от физиологического состояния организма.

Лактат — продукт анаэробного гликолиза. Он образуется при любых состояниях организма в эритроцитах и работающих мышцах. Таким образом, лактат используется в глюконеогенезе постоянно.

Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке.

Аминокислоты образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.

Большинство реакций глюконеогенеза протекает за счёт обратимых реакций гликолиза и катализируется теми же ферментами. Однако 3 реакции гликолиза термодинамически необратимы. На этих стадиях реакции глюконеогенеза протекают другими путями. Необходимо отметить, что гликолиз протекает в цитозоле, а часть реакций глюконеогенеза происходит в митохондриях.

Образование фосфоенолпирувата из пирувата . Образование фосфоенолпирувата из пирувата происходит в ходе двух реакций первая из которых протекает в митохондриях. Пируват, образующийся из лактата или из некоторых аминокислот, транспортируется в матрикс митохондрий и там карбоксилируется с образованием оксалоацетата.

Пируват-карбоксилаза, катализирующая данную реакцию, — митохондриальный фермент, коферментом которого является биотин. Реакция протекает с использованием АТФ.

Дальнейшие превращения оксалоацетата протекают в цитозоле. Следовательно, на этом этапе должна существовать система транспорта оксалоацетата через митохондриальную мембрану, которая для него непроницаема. Оксалоацетат в митохондриальном матриксе восстанавливается с образованием малата при участии NADH (обратная реакция цитратного цикла).

Образовавшийся малат затем проходит через митохондриальную мембрану с помощью специальных переносчиков. Кроме того, оксалоацетат способен транспортироваться из митохондрий в цитозоль в виде аспартата в ходе малат-аспартатного челночного механизма. В цитозоле малат вновь превращается в оксалоацетат в ходе реакции окисления с участием кофермента NAD + . Обе реакции: восстановление оксалоацетата и окисление малага катализируют малатдегидрогеназа, но в первом случае это митохондриальный фермент, а во втором — цитозольный. Образованный в цитозоле из ма-лата оксалоацетат затем превращается в фосфоенолпируват в ходе реакции, катализируемой фосфоенолпируваткарбоксикиназой — ГТФ-зависимым ферментом.

Образование глюкозы из лактата. Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD + ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют "глюкозо-лактатным циклом", или "циклом Кори".

Цикл Кори выполняет 2 важнейшие функции: 1 — обеспечивает утилизацию лактата; 2 — предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО2 и Н2О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза.

Образование глюкозы из аминокислот. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цитратного цикла, могут рассматриваться как потенциальные предшественники глюкозы и гликогена и носят название гликогенных. Например, окса-лоацетат, образующийся из аспарагиновой кислоты, является промежуточным продуктом как цитратногр цикла, так и глюконеогенеза. Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в глюкозонеогенез. Следовательно, существует следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах → пируват в мышцах → аланин в мышцах → аланин в печени → глюкоза в печени → глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

Образование глюкозы из глицерола. Глицерол образуется при гидролизе триацил-глицеролов, главным образом в жировой ткани. Использовать его могут только те ткани, в которых имеется фермент глицерол киназа, например печень, почки. Этот АТФ-зависимый фермент катализирует превращение глицерола в α-глицерофосфат (глицерол-3-фосфат). При включении глицерол-3-фосфата в глюконеогенез происходит его дегидрирование NAD-зависимой дегидрогеназой с образованием дигидроксиацетонфосфата, который далее превращается в глюкозу.

35.35 Представление о пентозофосфатном пути превращений глюкозы. Окислительные реакции (до стадии рибулозо-5-фосфата). Распростра­нение и суммарные результаты этого пути (образование пентоз, НАДФН и энергетика)

Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) — окислительной и неокислительной.

В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу — рибулозо-5-фосфат, и образуется восстановленный NADPH. В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат и метаболиты гликолиза. Пентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным коферментом NADPH, который используется в восстановительных процессах. Суммарное уравнение пентозофосфатного пути выражается следующим образом:

3 Глюкозо-6-фосфат + 6 NADP + → 3 СО2 + 6 (NADPH + Н + ) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.

Читайте также:  Основа сушки тела

Ферменты пентозофосфатного пути, так же, как и ферменты гликолиза, локализованы в цитозоле. Наиболее активно пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках.

В окислительной части пентозофосфатного путиглюкозо-6-фосфат подвергается окислительному декарбоксилированию, в результате которого образуются пентозы. Этот этап включает 2 реакции дегидрирования.

Первая реакция дегидрирования — превращение глюкозо-6-фосфата в глюконолактон-6-фосфат — катализируется NАDР + -зависимой глюкозо-6-фосфатдегидрогеназой и сопровождается окислением альдегидной группы у первого атома углерода и образованием одной молекулы восстановленного кофермента NADPH. Далее глюконолактон-6-фосфат быстро превращается в 6-фосфоглюконат при участии фермента глюконолактонгидратазы. Фермент 6-фосфоглюконатдегидрогеназа катализирует вторую реакцию дегидрирования окислительной части, в ходе которой происходит также и декарбоксилирование. При этом углеродная цепь укорачивается на один атом углерода, образуется рибулозо-5-фосфат и вторая молекула гидрированного NADPH. Восстановленный NADPH ингибирует первый фермент окислительного этапа пентозофосфатного пути — глюкозо-6-фосфатдегидрогеназу. Превращение NADPH в окисленное состояние NADP + приводит к ослаблению ингибирования фермента. При этом скорость соответствующей реакции возрастает, и образуется большее количество NADPH.

Суммарное уравнение окислительного этапа пентозофосфатногопути можно представить в виде:

Реакции окислительного этапа служат основным источником NADPH в клетках. Гидрированные коферменты снабжают водородом биосинтетические процессы, окислительно-восстановительные реакции, включающие защиту клеток от активных форм кислорода.

Окислительный этап образования пентоз и неокислительный этап (путь возвращения пентоз в гексозы) составляют вместе циклический процесс. Такой процесс можно описать общим уравнением:

Это означает, что из 6 молекул глюкозы образуются 6 молекул рибулозо-5-фосфат (пентозы) и 6 молекул СО2. Ферменты неокислительнойфазы превращают 6 молекул рибулозо-5-фосфат в 5 молекул глюкозы (гексозы). При последовательном проведении этих реакций единственным полезным продуктом является NADPH, образующийся в окислительной фазе пентозофосфатного пути. Такой процесс называют пентозофосфатным циклом. Протекание пентозофосфатного цикла позволяет клеткам продуцировать NADPH, необходимый для синтеза жиров, не накапливая пентозы.

Энергия, выделяющаяся при распаде глюкозы, трансформируется в энергию высокоэнергетического донора водорода — NADPH. Гидрированный NADPH служит источником водорода для восстановительных синтезов, а энергия NADPH преобразуется и сохраняется во вновь синтезированных веществах, например жирных кислотах, высвобождается при их катаболизме и используется клетками.

Ниже приведена общая схема превращения углеродного скелета аланина, цистеина, глицина, треонина и серина в пирува В состав пирувата включаются все атомы углерода глицина, аланина, цистеина и серина и только два атома углерода треонина. Далее пируват может превращаться в ацетил-СоА.

Глицин

В число амфиболических интермедиатов, образующихся из глицина, входят пируват, -метилентетрагидрофолат. При образовании пирувата из глицина последний сначала превращается в серин в результате реакции, катализируемой серин-гидроксиметилтрансферазой (рис. 31.5), а затем из серина образуется пируват (реакция катализируется сериндегидратазой) (рис. 31.7; см также следующий ниже раздел «Серин»).

Рис. 31.5. Легко обратимая реакция, катализируемая се-рингидроксиметилтрансферазой. тетрагидрофолат.

Главный путь катаболизма глицина у позвоночных — это катализируемое глицинсинтазным комплексом превращение, в результате которого образуются и NH, а метиленовая группа переносится на тетрагидрофолат с образованием -метилентетрагидрофолата. Эта обратимая реакция (рис. 31.6) напоминает превращение пирувата в ацетил-СоА ферментами пируватде идрогеназного комплекса. Оба комплекса находятся в митохондриях печени и представляют собой макромолекулярные агрегаты. Реакция расщепления глицина протекает в печени большинства позвоночных включая человека и других млекопитающих, а также птиц и рептилии

По-видимому, у человека и многих других позвоночных эта реакция является основным путем катаболизма не только глицина, но и серина (см. ниже раздел «Серин»).

Метаболические нарушения катаболизма глицина. Ниже рассматриваются два вида нарушений метаболизма глицина.

А. Глицннурия. Глицинурия наблюдалась лишь в одной семье. Она характеризуется повышенной экскрецией глицина с мочой и ассоциируется с тенденцией к образованию оксалатных камней в почках, при этом содержание оксалата в моче остается в пределах нормы. Глицинурия, по всей видимости наследуется как доминантный признак, сцепленный, вероятно, с Х-хромосомой. Уровень содержания глицина в плазме остается нормальным, тогда как количество глицина, экскретируемого с мочой, достигает 600—1000 . Это позволяет сделать заключение, что глицинурия связана с нарушением реабсорбции глицина в почечных канальцах.

Б. Первичная гипероксалурия. Первичная гипероксалурия характеризуется постоянно высокой экскрецией оксалата с мочой, независимо от поступления оксалата с пищей. При развитии болезни наблюдается прогрессирующее двустороннее образование оксалатных камней в мочевыводящих путях;

Рис. 31.6. Обратимое расщепление глицина митохондриальным глицинсинтазным комплексом. PLP пиридоксальфосфат.

далее развивается нефрокальциноз и рецидивирующая инфекция мочевыводящих путей. Летальный исход наступает в детском или молодом возрасте от почечной недостаточности или гипертонии. Избыток оксалата, очевидно, имеет эндогенное происхождение; вероятно, он образуется из глицина (при дезаминировании последнего образуется глиоксилат — предшественник оксалата). Метаболический дефект, как полагают, состоит в нарушении метаболизма глиоксилата, точнее его превращения в формиат или (путем пераминирования) в глицин. В результате избыток глиоксилата окисляется до оксалата. Вероятно, наследственное нарушение метаболизма — первичную гипероксалурию — можно объяснить сочетанием недостаточности глицин-трансаминазы и нарушения окисления глиоксилата в формиат.

Аланин

В результате переаминировання L-аланина (рис. 31.7) образуется пируват, который далее может декарбоксилироваться с образованием ацетил-СоА.

Вероятно, по тем же причинам, которые были рассмотрены при обсуждении катаболизма глутамата и аспартата, метаболических нарушений катаболизма а-аланина не обнаружено.

Серин

Превращение серина в пируват, катализируемое сериндегидратазой (пиридоксальфосфатсодержа-щим белком), включает элиминирование воды и гидролитическое удаление аммонийной группы из образующегося интермедиата (рис. 31.7). Печень крысы и морской свинки богата сериндегидратазой; у этих видов превращение серина в пируват при участии данного фермента имеет существенное физиологическое значение, в то время как у человека и многих других позвоночных серин деградирует преимущественно с образованием глицина и N5, N10-метилентетрагидрофолата. Эта реакция катализируется серин-гидроксиметилтрансферазой (рис. 31.5). Дальнейший катаболизм серина идет по пути катаболизма глицина (рис. 31.6).

Цистин

Подобно азоту и углероду, сера совершает в биосфере непрерывный кругооборот, который осуществляется за счет метаболической активности прокариотических и эукариотических организмов. Млекопитающие не имеют систем перевода серы в оргарическую форму они участвуют в кругообороте, осуществляя катаболическое превращение органических соединений серы в неорганические. Например, человек экскретирует приблизительно 20—30 ммоль серы в сутки, из них по меньшей мере 80% приходится на неорганический сульфат.

Читайте также:  Болит щиколотка и пятка что делать

Главный метаболический путь цистина у млекопитающих — превращение в цистеин в результате реакции, катализируемой цистинредуктазой (рис. 31.8). Далее катаболизм цистина совпадает с катаболизмом цистеина (см. ниже).

Рис. 31.7. Превращение аланина и серина в пируват. Аланин-трансаминаза и сериндегидратаза в качестве кофактора используют пиридоксальфосфат. В результате реакции, катализируемой сериндегидратазои, происходит элиминирование из серина, приводящее к образованию ненасыщенной аминокислоты. Последняя перегруппировывается в а-иминокислоту, которая подвергается спонтанному гидролизу с образованием пирувата и аммиака. Таким образом, в уравнение суммарной реакции, катализируемой сериндегидратазой, вода не входит. глутамат, а КГ — а-кетоглутарат

Рис. 31.8. Реакция, катализируемая цистинрсдуктазой.

Цистеин

Цистеин у млекопитающих катаболизирует по двум основным путям: по прямому окислительному (цистеинсульфинатному) пути и по пути переаминирования (-меркаптопируватному) (рис. 31.9). Первоначально предполагали, что имеется еще и третий путь с участием цистеиндесульфгидразы, который, как было показано, функционирует у бактерий. Однако маловероятно, что этот путь функционирует у млекопитающих, поскольку в их тканях активность цистеиндесульфгидразы не обнаружена.

А. Прямой окислительный путь катаболизма

Рис. 31.9. Катаболизм L-цистеина по пути прямого окисления (цистеинсулъфинатный путь, слева) и переаминировання (-меркаптопируватный путь, справа). Р-Сульфинилпируват помещен в скобки, так как образование этого интермедиата экспериментально не доказано. Окисление сульфита в последней реакции прямого окислительного пути катализируется сульфитоксидазой.

цистеина. Превращение цистеина в цистеинсульфинат (рис. 31.9) катализируется цистеин-диоксигеназой — ферментом, функционирующим при участии . Дальнейший катаболизм цистеинсульфината включает, вероятно, переаминирование с образованием Р-сульфинилпи-рувата. Возможно, что трансаминаза тканей млекопитающих, использующая цистеинсульфинат как донор аминогруппы, идентична классической глутамат:аспартат трансаминазе. Следует, однако, отметить, что предполагаемый продукт трансаминирования Р-сульфинилпирува пока еще не был идентифицирован в системе катаболизма цистеинсульфината. Превращение постулируемого интермедиата Р-сульфинилпирувата в пируват осуществляется, вероятно, неферментативным путем.

Б. Трансаминазный (З-меркаптопируватный) путь катаболизма цистеина. Обратимое пераминирование цистеина в 3-меркаптопируват (гиолпируват) катализируется специфическими цистеиновыми транс-аминазами или аспарагиновой и глутаматной транс-аминазами печени и почек млекопитающих (рис. 31.9). З-Меркаптопируват может далее восстанавливаться в ходе реакции, катализируемой L-лактатдегидрогеназой. Образующийся продукт 3-меркап-голактат является нормальным компонентом мочи человека в форме смешанного дисульфида с цистеином; содержание последнего в моче пациентов с меркаптолактат-цистеин-дисульфидурией возрастает. Альтернативное превращение 3-меркапто-пирувата идет по пути отщепления с образованием пирувата (рис. 31.9).

Нарушения метаболизма серусодержащих аминокислот. В табл. 31.2 приведена сводка данных о нарушениях метаболизма серусодержащих аминокислот. Некоторые из них рассмотрены ниже.

А. Цистинурия (цистин-лизинурия). При этом наследуемом метаболическом заболевании экскреция цистина с мочой в 20 — 30 раз превышает норму. Значительно повышается также экскреция лизина, аргинина и орнитина. Цистинурию рассматривают как следствие нарушения процессов транспорта в почках. Значительное увеличение у пациентов с цистинурией экскреции с мочой наряду с цистином лизина, аргинина и орнитина позволяет предполагать, что нарушается процесс обратного всасывания всех этих четырех аминокислот, который, возможно, осуществляется в общем для них «участке» реабсорбции; поэтому вместо термина «цистинурия» в настоящее время предпочитают термин цистинлизинурия.

Поскольку цистин слаборастворим, у больных цистинурией может происходить образование цистиновых камней в почечных канальцах. Если такого осложнения не возникает, цистинурия протекает сравнительно доброкачественно и во многих случаях остается недиагностируемой.

Рис. 31.10. Смешанный дисульфид цистеина и гомоцистеина.

В моче пациентов с цистинурией был также обнаружен смешанный дисульфид L-цистеина и L-гомоцистеина (рис. 31.10). Это соединение имеет несколько большую растворимость, чем цистин; в той мере, в какой оно образуется вместо цистина, уменьшается тенденция к образованию цистиновых камней.

Б. Цистиноз (болезнь накопления цистина). При цистинозе, который также является наследственным заболеванием, происходит формирование кристаллов цистина во многих тканях и органах (особенно в ретикулоэндотелиальной системе). Обычно при этом заболевании наблюдается общая аминоацидурия, т. е. повышение содержания в моче всех аминокислот. Серьезно нарушается и ряд других функций почек; летальный исход обычно наступает в раннем возрасте при явлениях острой почечной недостаточности. Согласно полученным в последнее время данным, причиной болезни является нарушение функции лизосом.

В. Гомоцистинурии. Частота наследственных нарушений катаболизма метионина оценивается как 1 на 160000 новорожденных. Гомоцистин экскретируется с мочой (до 300 мг в сутки), в ряде случаев вместе с -аденозилметионином.

Повышается содержание метионина в плазме. Причиной гомоцистинурии могут быть по крайней мере четыре метаболических нарушения (табл. 31.2). При гомоцистинурии типа 1 клиническими симптомами являются тромбоз, остеопороз, смещение хрусталика глаза и, часто, умственная отсталость. Известны две формы заболевания: витамин В6 — чувствительная и витамин В6 — нечувствительная. Диета с низким содержанием метионина и высоким содержанием цистина может предотвратить патологические изменения, если она соблюдается с раннего возраста. Другие типы цистинурии связаны с нарушениями в цикле реметилирования (табл. 31.2).

Треонин

Треонин расщепляется треонинальдолазой на ацетальдегид и глицин, из ацетальдегида затем образуется ацетил-СоА (рис. 31.11). Катаболизм глицина обсуждался выше.

Таблица 31.2. Врожденные ошибки метаболизма серусодержащих аминокислот (см. скан)

Рис. 31.11. Превращение треонина и глицина в серин, пируват и ацетил-СоА. фолат-формил [5—10] тетрагидрофолиевая кислота.

Гидроксипролин

4-Гидрокси L-пролин превращается в пируват и глиоксилат (рис. 31.12). Митохондриальная дегидрогеназа катализирует превращение гидроксипролина в Последний находится в неферментативном равновесии с у-гидрокси -глутамат-у-полуальдегидом, который образуется в результате присоединения воды. Полуальдегид окисляется в соответствующую карбоновую кислоту, далее при переаминировании образуется а-кето-у-гидроксиглутарат. При последующем альдольном расщеплении образуются глиоксилат и пируват.

Метаболические нарушения катаболизма гидроксипролин а. Гипергидроксипролинемия является метаболическим нарушением, которое характеризуется высоким содержанием в плазме гидроксипролина. Оно наследуется по аутосомно-рецессивному типу и обусловлено дефектом 4-гидроксипролиндегидрогеназы (рис. 31.12). В отличие от гиперпролинемии типа II здесь не нарушается катаболизм пролина, поскольку дефектный фермент участвует только в катаболизме гидроксипролина. Рассматриваемое метаболическое нарушение не влияет на метаболизм коллагена и, подобно гиперпролинемии, является, по-видимому, безопасным.

Ссылка на основную публикацию
Пилатес для всего тела
В 1920-е годы тренер Джозеф Пилатес представил в Америке эффективный комплекс упражнений, который должен был помочь травмированным спортсменам и танцорам...
Перелом колена лечение
Перелом коленного сустава – сложный вид травмы, который нередко сопровождается такими осложнениями, как смещение суставной поверхности, повреждение надколенника, мыщелка. Нередко...
Перелом лодыжки гимнастика видео
Действия перед иммобилизацией Непосредственно после перелома необходимо посетить травмпункт. Только там смогут определить наличие и характер, полученной травмы. Если есть...
Пилатес для новичков
На страницах нашего сайта мы уже рассказывали об эффективности метода пилатеса для похудения и улучшения качества тела. В этой статей...
Adblock detector