Характеристика обмена белков

Характеристика обмена белков

Обмен веществ и энергии – это совокупность физических, химиче-ских и физиологических процессов усвоения питательных веществ в орга-низме с высвобождением энергии. В обмене веществ (метаболизме) выделяют два взаимосвязанных,но разнонаправленных процесса анаболизм и катаболизм.Анаболизм – это совокупность процессов биосин-теза органических соединений, компонентов клеток, органов и тканей из поглощенных питательных веществ. Катаболизм – это процессы расщеп-ления сложных компонентов до простых веществ, обеспечивающих энер-гетические и пластические потребности организма. Жизнедеятельность ор-ганизма обеспечивается энергией за счет анаэробного и аэробного ката-болизма поступающих с пищей белков, жиров и углеводов.

Белки являются основным пластическим материалом, из которого построены клетки и ткани организма. Они являются составной частью мышц, ферментов, гормонов, гемоглобина, антител и других жизненно важных образований. Белки состоят из различных аминокислот, которые подразделяются на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в организме, а незаменимые (валин, лейцин, изо-лейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) должны поступать в организм только с пищей.

Поступившие в организм белки расщепляются в ЖКТ до аминокис-лот и в таком виде всасываются в кровь и транспортируются в печень. В печени аминокислоты подвергаются дезаминированию и переаминированию.Эти процессы обеспечивают синтез видоспецифичных аминокислот, которые из печени поступают в ткани и используются для синтеза тканеспецифичных белков. При избыточном поступлении белков с пи-щей, после отщепления от них аминогрупп, они превращаются в организме в углеводы и жиры. Белковых депо в организме человека нет.

Наряду с основной, пластической функцией, белки могут играть роль источников энергии. При окислении в организме 1г белка выделяется 4,1ккал энергии.Конечными продуктами расщепления белков в тканях являются мочевина, мочевая кислота, аммиак, креатин, креатинин и неко-торые другие вещества. Они выводятся из организма почками и частично потовыми железами.

О состоянии белкового обмена в организме судят по азотистому балансу, т.е. по соотношению количества азота, поступившего в организм, и его количества, выведенного из организма. Если это количество одина-ково, то состояние называется азотистым равновесием. Состояние, при ко-тором усвоение азота превышает его выведение, называется положительным азотистым балансом.Оно характерно для растущего организма, спортсменов в период их тренировки и лиц после перенесенных заболева-ний. При полном или частичном белковом голодании, а также во время не-которых заболеваний азота усваивается меньше, чем выделяется. Такое со-стояние называется отрицательным азотистым балансом.При голода-нии белки одних органов могут использоваться для поддержания жизне-деятельности других, более важных. При этом расходуются в первую оче-редь белки печени и скелетных мышц; содержание белков в миокарде и тканях мозга остается почти без изменений.

Нормальная жизнедеятельность организма возможна лишь при азо-тистом равновесии или положительном азотистом балансе. Такие состоя-ния достигаются, если организм получает около 100г белка в сутки; при больших физических нагрузках потребность в белках возрастает до 120 –150 г. Всемирная Организация Здравоохранения рекомендует упот-реблять не менее 0,75 г белка на 1 кг массы тела в сутки.

Обмен углеводов

Углеводы поступают в организм человека,в основном,в виде крахмала,гликогена,сахарозы,лактозы. В процессе пищеварения из них образуются глюкоза, фруктоза, галактоза. Глюкоза всасывается в кровь и через воротную вену поступает в печень. Фруктоза и галактоза превращаются в глюкозу в печеночных клетках. Избыток глюкозы в пече-ни фосфорилируется и переходит в гликоген. Его запасы в печени и мышцах у взрослого человека составляют 400 – 500 г. При углеводном голода-нии происходит распад гликогена и глюкоза поступает в кровь.

Углеводы служат в организме основным источником энергии.При окислении 1г углеводов освобождается 4,1ккал энергии.Для окисления углеводов требуется значительно меньше кислорода, чем при окислении жиров. Это особенно повышает роль углеводов при мышечной деятельности. При уменьшении концентрации глюкозы в крови резко сни-жается физическая работоспособность. Большое значение углеводы имеют для нормальной деятельности нервной системы.

Глюкоза выполняет в организме и некоторые пластические функции. В частности, промежуточные продукты ее обмена (пентозы) входят в состав нуклеотидов и нуклеиновых кислот, некоторых ферментов, а также служат структурными элементами клеток. Важным производным глюкозы является аскорбиновая кислота (витамин С), которая не синтези-руется в организме человека.

При голодании запасы гликогена в печени и концентрация глюкозы в крови уменьшаются. То же происходит при длительной и напряженной физической работе без дополнительного приема углеводов. Снижение содержания глюкозы в крови до 0,06 – 0,07 % (нормальная концентрация 0,08 – 0,12 %) приводит к развитию гипогликемии, что проявляется мы-шечной слабостью, падением температуры тела, а в дальнейшем – судоро-гами и потерей сознания. При гипергликемии (содержание сахара в крови достигает 0,15 % и более) избыток глюкозы быстро выводится почками. Такое состояние может возникать при эмоциональном возбуждении, после приема пищи, богатой легкоусвояемыми углеводами, а также при заболе-ваниях поджелудочной железы. При истощении запасов гликогена усили-вается синтез ферментов, обеспечивающих реакцию глюконеогенеза, т.е. синтеза глюкозы из лактата или аминокислот.

Обмен липидов

Физиологическая роль липидов (нейтральных жиров,фосфатидов и стеринов) в организме заключается в том, что они входят в состав кле-точных структур (пластическая функция липидов) и являются богатыми источниками энергии (энергетическая функция).

Читайте также:  Про широкие бедра

Нейтральные жиры расщепляются в кишечнике до глицерина и жирных кислот. Эти вещества, проходя через кишечник, вновь превраща-ются в жир, который всасывается в лимфу и в большом количестве в кровь. Кровь транспортирует жиры в ткани, где они используются для пла-стического синтеза и в качестве энергетического материала.

Общее количество жира в организме человека колеблется в широких пределах и составляет 10 – 20 % массы тела, при ожирении оно может дос-тигать 40 – 50 %. Жировые депо в организме непрерывно обновляются. При обильном углеводном питании и отсутствии жиров в пище синтез жи-ра в организме может происходить из углеводов.

Нейтральные жиры, поступающие в ткани из кишечника и жировых депо, окисляются и используются как источник энергии.При окислении 1г жира освобождается 9,3ккал энергии.В связи с тем, что в молекуле жира содержится относительно мало кислорода, последнего требуется для окисления жиров больше, чем при окислении углеводов. Как энергетиче-ский материал жиры используются, главным образом, в состоянии покоя и при выполнении длительной малоинтенсивной физической работы. В на-чале более напряженной мышечной деятельности используются преиму-щественно углеводы, которые в дальнейшем в связи с уменьшением их за-пасов замещаются жирами. При длительной работе до 80 % всей энергии расходуется в результате окисления жиров.

Жировая ткань,покрывающая различные органы,предохраняет их от механических воздействий.Скопление жира в брюшной полости обеспечивает фиксацию внутренних органов, а подкожная жировая клетчатка защищает организм от излишних теплопотерь. Секрет сальных желез предохраняет кожу от высыхания и излишнего смачивания водой.

Пищевые продукты, богатые жирами, содержат некоторое количест-во фосфатидов и стеринов. Эти вещества также синтезируются в стенке кишечника и в печени из нейтральных жиров, фосфорной кислоты и холи-на. Фосфатиды входят в состав клеточных мембран, ядра и протоплазмы; они имеют большое значение для функциональной активности нервной ткани и мышц.

Важная физиологическая роль принадлежит стеринам (в частности, холестерину),которые являются источником образования в организме желчных кислот, а также гормонов коры надпочечников и половых желез. При избытке холестерина в организме развивается патологическое заболе-вание – атеросклероз. Некоторые стерины пищи, например, витамин Д, также обладают большой физиологической активностью.

Обмен липидов тесно связан с обменом белков и углеводов. Посту-пающие в организм в избытке белки и углеводы превращаются в жир. На-оборот, при голодании жиры, расщепляясь, служат источником углеводов.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

1. Поступив в организм, молекулы пищевых веществ участвуют во множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества либо используются в качестве сырья для синтеза новых клеток, либо окисляются, доставляя организму энергию. Часть этой энергии необходима для непрерывного построения новых тканевых компонентов. Другая часть расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции клеточных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ принято разделять на анаболические и катаболические. Анаболизмом (ассимиляцией) называют химические процессы, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом (диссимиляцией) называют расщепление этих сложных веществ, приводящее к освобождению энергии, при этом происходит разрушение протоплазмы и расходование ее веществ.

Сущность обмена веществ заключается:

1) в поступлении в организм из внешней среды различных питательных веществ;

2) в усвоении и использовании их в процессе жизнедеятельности как источников энергии и материала для построения тканей;

3) в выделении образующихся продуктов обмена во внешнюю среду.

Специфические функции обмена веществ:

1) извлечение энергии из окружающей среды в форме химической энергии органических веществ;

2) превращение экзогенных веществ в строительные блоки, т.е. предшественники макромолекулярных компонентов клетки;

3) сборка белков, нуклеиновых кислот и других клеточных компонентов из этих строительных блоков;

4) синтез и разрушение тех биомолекул, которые необходимы для выполнения различных специфических функций данной клетки.

2. Обмен белков — это совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки составляют основу всех клеточных структур и являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека в среднем составляет 100-120 г (при трате энергии 3000 ккал/сутки).

В распоряжении организма должны быть все аминокислоты (20) з определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей. Это т.н. незаменимые аминокислоты. Другие аминокислоты могут быть синтезированы в организме и называются заменимыми (12: гликокол, аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин, гистидин и др.). Белки делят на биологически полноценные (с полным набором всех восьми незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Читайте также:  Этикетки разных продуктов

Основными этапами обмена белков являются:

1) ферментативное расщепление белков пищи до аминокислот и всасывание последних;

2) превращение аминокислот;

3) биосинтез белков;

4) расщепление белков;

5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки тонкого кишечника, аминокислоты по воротной вене поступают в печень, где они либо немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Белки тела непрерывно и быстро расщепляются и синтезируются заново. Период обновления общего белка в организме составляет у человека 80 дней. Если пища содержит больше аминокислот, чем это необходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH2, т.е. производят дезаминирование.

Другие ферменты, соединяя отщепленные аминогруппы с СО2, образуют из них мочевину, которая переносится с кровью в почки и выделяется с мочой. Углеродные цепи некоторых аминокислот, называемых «глюкогенными», могут превращаться в глюкозу или гликоген; углеродные цепи других аминокислот – «кетогенных» дают кетоновые тела. Белки практически не откладываются в депо, поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, — не резервные, а ферменты и структурные белки клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившегo в организм с пищей и выделенного из него. В норме у взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма (азотистое равновесие). Когда поступление азота превышает его выделение, говорят о положительном азотистом балансе, при этом происходит задержка азота в организме. Наблюдается в период роста организма, во время беременности, при выздоровлении. Когда количество выведенного из организма азота превышает количество поступившего, говорят об отрицательном азотистом балансе. Он отмечается при значительном снижении содержания белка в пище (белковом голодании).

Качественные изменения белкового обмена приводят к изменениям в структуре клеток и тканей — белковым дистрофиям — диспротеинозам.

3. Обмен жиров — это совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов, составляющих 10-30% массы тела. Основная масса жиров — это нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека составляет 70-100 г. Биологическая ценность жиров определяется тем, что некоторые ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), необходимые для жизнедеятельности, являются незаменимыми и не могут образовываться в организме человека из других жирных кислот, поэтому они должны обязательно поступать с пищей (растительные и животные жиры). Суточная потребность в незаменимых жирных кислотах для взрослого человека составляет 10-12 г.

Основными этапами жирового обмена являются:

1) ферментативное расщепление жиров пищи в желудочно-кишечном тракте до глицерина и жирных кислот и всасывание последних в тонком кишечнике;

2) образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;

3) гидролиз этих соединений на поверхности клеточных мембран ферментом липопротеидлипазой, всасывание жирных кислот и глицерина в клетки, где они используются для синтеза собственных липидов клеток органов и тканей. После синтеза липиды могут подвергаться окислению, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, поступает некоторое количество липоидов (жироподобных веществ) — фосфатидов и стеринов. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток. Фосфатидами особенно богата нервная ткань. Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит своеобразным изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови 3,11-6,47 ммоль/л.

Патология жирового обмена проявляется чаще всего в общем увеличении нейтрального жира в организме, называемом общим ожирением (тучностью). Причиной этого могут быть нейроэндокринные расстройства, а также избыточное питание, алкоголизм, малоподвижный образ жизни.

4. Обмен углеводов — это совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами ряда сложных соединений (нуклеопротеиды, гликопротеиды), используемых для построения клеточных структур. Суточная потребность в углеводах взрослого человека составляет 400-500 г.

Читайте также:  Как научиться элементам на турнике

Основными этапами углеводного обмена являются:

1) расщепление углеводов пищи в желудочно-кишечном тракте и всасывание моносахаридов в тонком кишечнике;

2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях;

3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли в крови (мобилизация гликогена);

4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;

5) превращение глюкозы в жирные кислоты;

6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена (полисахарид). Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена около 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разносится по всему организму, используясь как основной энергетический материал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды).

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови человека в норме 4,44-6,67 ммоль/л, при увеличении ее содержания (гипергликемии) до 8,34-10 ммоль/л она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л появляется чувство голода, до 3,22 ммоль/л — возникают судороги, бред и потеря сознания (кома).

При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Распад гликогена в печени до глюкозы — гликогенолиз. Биосинтез углеводов из продуктов их распада или продуктов распада жиров и белков — гликонеогенез. Расщепление углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот — гликолиз.

Когда поступление глюкозы превышает потребность, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источник энергии.

Нарушение нормального обмена углеводов проявляется повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена наблюдается при сахарном диабете. В основе болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой.

а) основные функции: структурная (пластическая), каталитическая (ферменты), сократительная, защитная (антитела), регуляторная (пептидные гормоны), транспортная (мембранные белки-переносчики, сывороточные альбумины, гемоглобин)

б) закономерности и особенности метаболизма

— около половины аминокислот (8 из 20) не могут синтезироваться в организме (незаменимые аминокислоты); синтез остальных (заменимые) возможен только на основе соответствующих альфа-кетокислот (являющихся промежуточными продуктами обмена углеводов и липидов), но не из простых органических соединений и аммиака

— в организме отсутствуют депо белков и аминокислот, все белки либо включены в конструкцию тех или иных биоструктур, либо задействованы на выполнение определенных физиологических функций; поэтому при недостаточном поступлени белков в организм происходит частичное разрушение белковых компонентов клеточных и неклеточных структур до аминокислот, которые идут на синтез жизненно необходимых белков

— характеристика белков как пищевых субстратов; белки подразделяют на полноценные (содержат полный набор незаменимых аминокислот; легко перевариваются) и неполноценные (отсутствует одна или несколько незаменимых аминокислот; содержат антиферментные, антивитаминные и аллергизирующие факторы); животные белки считаются более предпочтительными для питания по сравнению с растительными, так как они легче усваиваются и по своему аминокислотному составу они ближе к тканевым белкам человека; энергетическая ценность белков составляет 17,6 кДж/г; суточная потребность в белке равна 80-100г

— расщепление пищевых белков начинается в желудке (под действием пепсина) и завершается в тонкой кишке (под действием панкреатических — трипсина и химотрипсина — и кишечных – пептидаз и олигопептидаз – ферментов); при этом деградация белков происходит последовательно в полости кишки, в слое слизистых наложений и в щеточной кайме кишечного эпителия; продуктами расщепления являются олигопептиды и аминокислоты, которые и подвергаются всасыванию (за сут – более 100 г); из этих продуктов в клетках тканей и органов синтезируются разнообразные специфические для организма белки; время их жизни варьирует в широких пределах, но в среднем составляет около 80 дней; по истечении этого срока белки подвергаются разрушению под действием лизосомальных гидролаз до аминокислот, часть которых реутилизируется, а часть окисляется до конечных продуктов – мочевины и мочевой кислоты

— оценка состояния белкового обмена в целом (на уровне организма) производится на основании определения азотистого баланса; дело в том, что весь азот, поступивший с белковыми компонентами пищи, через некоторое время выделяется с мочой в виде мочевины и мочевой кислоты; в норме у взрослого человека эти потоки азота уравновешены; из поступившего в организм азота около 0,03-0,05 г N/кг/сут идет на компенсацию потерь белка в результате изнашивания тканей; положительный азотистый баланс (преобладание потребления над выделением) наблюдается при интенсивном росте организма или при беременности, отрицательный (преобладание выделения над потреблением) – при голодании и некоторых болезнях (злокачественных опухолях и др.)

Ссылка на основную публикацию
Adblock detector