Что управляет работой мышц

Что управляет работой мышц

Что руководит работой мышц

Лучший ответ:

Нервная система руководит работой мышц.
Она управляет работой мышц.

  • Другие вопросы:

    1. При окучивании культурных растений увеличивается количество корней: A. Придаточных Б. Боковых B. Главного и боковых Г. Придаточных и боковых 2. Зона проведения расположена в корне: A. Под корневым чехликом Б. Выше зоны всасывания B. В образовательной ткани Г. На кончике корня 3. Побег – это: A. Стебель Б. Стебель и листья B. Стебель, листья и почки Г. Листья и почки 4. Двудольные отличаются от однодольных: A. По форме листа Б. Имеют параллельное жилкование B. Имеют сетчатое жилкование Г. Не имеют черешков 5. Проводящие пучки листа состоят из клеток ткани: А. Механической Б. Проводящей В. Механической и проводящей Г. Запасающей 6. Раздельнополые цветки, имеющие только пестичные цветки и только тычиночные, присутствуют у: А. Кукурузы Б. Подсолнечника В. Яблони Г. Ивы 7. Видоизменением листьев не является: А. Усик гороха Б. Колючка барбариса В. Колючка кактуса Г. Усик винограда 8. Транспорт минеральных веществ и воды осуществляет: А. Древесина Б. Луб В. Пробка Г. Сердцевина 9. У капусты плод: А. Кочан Б. Стручок В. Боб Г. Ягода 10. Кожица листа – это ткань: А. Покровная Б. Механическая В. Проводящая Г. Запасающая Часть В 1. Найдите соответствие. Составьте пары, выбрав названия растений (обозначенные буквами) и соответствующие им соцветия. I. Кисть II. Зонтик III. Початок IV. Головка V. Колос VI. Метелка VII. Сложный зонтик VIII. Корзинка IX. Сложный колос A. Вишня Б. Черемуха B. Кукуруза Г. Подсолнечник Д. Клевер Е. Овес Ж. Морковь З. Пшеница И. Подорожник II. Найдите соответствие. У каких растений листья простые, а у каких – сложные? I. Простые II. Сложные A. Липа Б. Шиповник B. Пшеница Г. Клевер Д. Дуб Е. Акация Часть С Почему не из всех цветков, появляющихся на огурцах развиваются плоды? ОТВЕТЬТЕ, ПОЖАЛУЙСТА, СРООЧНООО!

    Представте что ты звезда, на писать сочинение 100-150 слов описать себя, и какое ощущение быть звездой

    1. Мифология – главный источник образов искусства Древнего мира. Напишите что это пожалуйста

    Мышцы, сокращаясь или напрягаясь, производят работу. Она может выражаться в перемещении тела или его частей. Такая работа совершается при поднятии тяжестей, ходьбе, беге. Это динамическая работа. При удерживании частей тела в определенном положении, удерживании груза, стоянии, сохранении позы совершается статическая работа. Одни и те же мышцы могут выполнять и динамическую, и статическую работу.

    Сокращаясь, мышцы приводят в движение кости, действуя на них, как на рычаги. Кости начинают двигаться вокруг точки опоры под влиянием приложенной к ним силы.

    Движение в любом суставе обеспечивается как минимум двумя мышцами, действующими в противоположных направлениях. Их называют мышцы-сгибатели и мышцы-разгибатели. Например, при сгибании руки двуглавая мышца плеча сокращается, а трехглавая мышца расслабляется. Это происходит потому, что возбуждение двуглавой мышцы через центральную нервную систему одновременно вызывает расслабление трехглавой мышцы.

    Работой мышц управляет нервная система, она обеспечивает согласованность их действий, приспосабливает их работу к реальной обстановке, делает ее экономичной. Ученые установили, что деятельность скелетной мускулатуры человека имеет рефлекторный характер. Непроизвольное отдергивание руки от горячего предмета, дыхательные движения, ходьба, различные трудовые движения — все это двигательные рефлексы различной сложности.

    Без работы мышцы со временем атрофируются. Однако если мышцы работают без отдыха, наступает их утомление. Это нормальное физиологическое явление. После отдыха работоспособность мышц восстанавливается.

    Развитие утомления мышц связано прежде всего с процессами, происходящими в центральной нервной системе. Утомлению способствует и накопление в мышце в процессе работы продуктов обмена веществ. Во время отдыха кровь уносит эти вещества, и работоспособность мышечных волокон восстанавливается.

    Скорость развития утомления зависит от состояния нервной системы, ритма работы, величины нагрузки, тренированности мышц.

    Постоянные занятия спортом, физическим трудом способствуют увеличению обьема мышц, возрастанию их силы и работоспособности.

    Зависимость работы и мощности мышц от нагрузки.

    Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мыш­ца, и мощность, развиваемую ею при работе.

    Читайте также:  Какие мальчики нравятся девушкам

    Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние: А = FS. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.

    Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.

    При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при со­вершении движений — о динамической.

    Сила сокращения и работа, совершаемая мышцей в единицу вре­мени (мощность), не остаются постоянными при статической и дина­мической работе. В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

    Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической рабо­те в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голода­ние» и мышечное утомление прогрессивно нарастает.

    В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совершении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.

    Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уро­вень умственного напряжения уменьшает мышечную выносливость.

    Статическая и динамическая работа.

    При статической работе мышечное сокращение не связано с движением частей тела. Например, мускулатура, обеспечивающая позу сидящего или стоящего человека, выполняет статическую работу. Динамическая работа — это когда отдельные части тела человека перемещаются. Физическая активность человека складывается из статической и динамической работы. Следует отметить, что при статической работе переносимость нагрузки зависит от функционального состояния тех или иных мышечных групп, а при динамической — еще и от эффективности систем, поставляющих энергию (сердечно-сосудистой, дыхательной) , а также от их взаимодействия с другими органами и системами. Максимальное напряжение, а также максимальное время напряжения, которое способна развивать и удерживать определенная группа мышц, зависят от ее локальной функциональной мощности. В условиях динамической работы выносливость и максимальная мощность определяются эффективностью механизмов энергопродукции и их согласованностью с другими функциональными системами организма. Работа может быть локальной, регионарной и общей. Если в работе задействованы до трети общей мышечной массы тела, то ее обозначают как локальную. В регионарной работе участвуют от трети до двух третей всей мускулатуры тела. При активации еще большего количества мышечной массы работа определяется как общая. Практическое значение имеет классификация интенсивности мышечной работы в зависимости от расхода энергии, исходя из максимума аэробных возможностей обследуемого. Максимум аэробных возможностей наиболее полно характеризуется максимумом потребления кислорода — (аэробной мощности) .

    Автор статьи Зыбина А.М.

    Скелетные мышцы

    Мышцы состоят из скелетной мышечной ткани. Это многоядерные клетки, которые имеют поперечно-полосатую исчерченность. Они способны преобразовывать электрическое возбуждение в сокращение и этот процесс называется электро-механическим сопряжением. Сокращаясь, они производят работу. Она может выражаться в перемещении тела или его частей. Работа, которая совершается при поднятии тяжестей, ходьбе, беге называется динамической. При удерживании частей тела или груза в определенном положении, стоянии, сохранении позы совершается статическая работа. Одни и те же мышцы могут выполнять и динамическую, и статическую работу.

    Рис. 1. Схема строения (а) и микрофотография (б) нервно-мышечного синапса.

    Сокращение мышцы происходит под действием сигналов, поступающих от мотонейронов (МН), расположенных в передних рогах спинного мозга. В области контакта нервной клетки с мышцей образуется нервно-мышечный синапс (рис. 1).

    Читайте также:  Какой сыр низкой жирности

    Он имеет строение обычного синапса, с той разницей, что в качестве постсинаптической мембраны выступает мембрана мышечной клетки. Нейромедиатором в таком синапсе является ацетилхолин (АЦХ). Он синтезируется прямо в окончании аксона и запасается в везикулах. На постсинаптической мембране располагаются ионотропные никотиновые рецепоты к ацетилхолину (Н-АХР). Названы они так, потому что помимо АЦХ их можно активировать с помощью алкалоида никотина. Этот рецептор является ионным каналом, через который могут проходит натрий и калий. При активации канала натрий входит в клетку и деполяризует мембрану. Выход калия незначителен, так как в состоянии покоя он, в отличие от натрия, находится в равновесии. Области рядом с синапсом снабжены потенциал-активируемыми натриевыми каналами, благодаря которым ПД распространяется дальше по мышечной мембране. Удаление АЦХ из щели осуществляет фермент ацетилхолин-эстераза (АХЭ).

    Задачей мышечной клетки является преобразовать ПД в сокращение, то есть, осуществить электромеханиеческое сопряжение.

    Сокращение скелетных мышц происходит по принципу скользящих нитей, за счет смещения актина и миозина в саркомере друг относительно друга. Вокруг каждого миозина располагается по 6 актинов, обазуя шестиугольник на срезе. Сократительные белки в скелетных мышцах расположенны упорядоченно, что обеспечивает максимальную эффективность их взаимодействия.

    Рис. 2. Строение саркомера, актима и миозина.

    Актин относят к микрофиламентам цитоскелета клетки. Это глобулярный белок (g-актин), который, полимеризуясь, образует фибриллы (f-актин). Актин имеет активные центры, с которыми связывается миозин. Поэтому, чтобы в состоянии покоя такого взаимодействия не происходило, эти центры прикрыты тропомиозином. Третий белок – тропонин – смещает тропомиозин с активных центров актина в присутствии ионов кальция, что приводит к связыванию миозина с актином. Таким образом, тропонин и ионы кальция осуществляют регуляцию сокращения.

    Миозин – это фибриллярный белок, который имеет два функциональных участка: головку и хвостик. Хвостики миозина скручиваются в димеры, после чего соединяются в полимеры (рис. 3). Таким образом, в области М-диска саркомера располагается стержень толстой полимерной нити миозина. Головки миозина располагаются по краям толстой нити. Они связывают актин и обладают АТФазной активностью (способны расщеплять АТФ до АДФ и фосфата).

    Рис. 3. Димерная (а) и полимерная (б) форма миозина.

    Цикл работы головки миозина (поперечных мостиков) (рис. 4). Каждый цикл состоит из четырех стадий:

    • прикрепление поперечного мостика к тонкому филаменту (использование энергии гидролиза);
    • движение поперечного мостика, создающее напряжение тонкого филамента (высвобождение АДФ и фосфата);
    • отсоединение поперечного мостика от тонкого филамента (присоединение АТФ);
    • получение поперечным мостиком энергии, после чего он снова готов к связыванию с тонким филаментом и повторению цикла (расщепление АТФ до АДФ и фосфата).

    Каждый поперечный мостик совершает свой рабочий цикл независимо от других мостиков; в любой момент процесса сокращения лишь некоторые из них связаны с прилегающими тонкими филаментами и создают тянущее усилие, тогда как другие находятся в стадии отсоединения. В результате – происходит сближение нитей актина в саркомере.

    Рис. 4. Цикл работы поперечных мостиков.

    Поскольку АТФ необходима для отсоединения миозина от актина, после смерти миозин связывается с актином и уже не отсоединяется. Это приводит к трупному окоченению.

    Таким образом, чтобы запустить сокращение необходимо преобразовать ПД в высвобождение ионов кальция.

    Источником поступления Са 2+ в цитоплазму является саркоплазматический ретикулум (СПР) мышечного волокна. Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг миофибрилл и окружает A-диски и I-диски. Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн, соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са 2+ .

    Отдельную систему составляют поперечные трубочки (T-трубочки), которые пересекают мышечное волокно на границе A-дисков и I-дисков, проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек вглубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са 2+ в высокой концентрации, и ионы Са 2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са 2+ обычно активирует поперечные мостики мышечного волокна.

    Читайте также:  100 Грамм продукта это сколько

    Рис. 5. Схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл.

    Процесс сокращения продолжается, пока ионы Са 2+ связаны с тропонином. Мембрана саркоплазматического ретикулума содержит Са 2+ -АТФазу, которая осуществляет активный транспорт Са 2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Как только концентрация кальция в цитоплазме достигает исходного уровня, начинается процесс расслабления.

    Рис. 6. Временные характеристики ПД, повышения внутриклеточной концентрации ионов кальция, его связывания с тропонином и сокращения мышцы.

    Как можно заметить из рис. 6, сокращение мышцы происходит через некоторое время после окончания ПД. Если повторные ПД придут до окончания сокращения, то эти сокращения наложатся друг на друга. Высокочастотная стимуляция нервного волокна приводит к наложению сокращений мышцы с увеличением общей силы сокращения, и такое сокращение называю тетаническим (или тетанусом). В зависимости от частоты ПД различают зубчатый (более низкие частоты) и гладкий (более высокие частоты) тетанус (рис. 7).

    Рис. 7. Сокращение мышцы при разной частоте раздражения. 1- одиночные сокращения, 2 – зубчатый тетанус, 3 – гладкий тетанус, 4 – частота раздрожения нерва.

    Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. Интересно, что при стимуляции нерва, Утомление нервно-мышечного синапса развивается раньше, чем утомление самой мышцы.

    Сердечные мышцы

    Сердечные мышцы состоят из одноядерных клеток кардиомиоцитов (КМЦ), которые имеют поперечно-полосатую исчерченность. Сокращение происходит по принципу скользящих нитей, как и в случае скелетных мышц. Отличается источник возбуждения, форма ПД и источники кальция для сокращения.

    Сердце обладает миогенной автоматией, то есть, возбуждение генерирует группа клеток, имеющих миогенное происхождение. Такие клетки располагаются в узлах автоматии. Далее ПД распространяется на КМЦ, и, благодаря щелевым контактам, легко переходит с клетки на клетку.

    ПД КМЦ состоит из 4 фаз (рис. 8):

    • деполяризация происходит за счет потенциал-управляемых натриевых каналов;
    • ранняя реполяризация происходит при активации потенциал-управлемых калиевых каналов;
    • плато возникает за счет открытия кальциевых каналов, ионы кальция входят в клетку и деполяризуют мембрану;
    • реполяризация осуществляется за счет калиевых каналов (кальциевые каналы постепенно инактивируются).

    Рис. 8. ПД кардиомиоцита.

    Вход кальция играет критическую роль в запуске сокращения. Для сокращения этого кальция не хватит, это только 20% необходимых ионов. Его называют «пусковым» кальцием, так как он связывается с кальций-зависимыми кальциевыми каналами (рианодиновыми рецепторами, RyR) на мембране СПР. Эти каналы при связывании кальция приводят к выбросу кальция из СПР, который составляет 80% необходимого для сокращения кальция.

    Длительность ПД КМЦ может составлять от 100 до 300 мс, что по времени близко ко времени сокращения клетки. После окончания ПД клетка находится в периоде рефрактерности, что препятствует возникновению тетанических сокращений в сердечной мышце.

    Рис. 9. Электромеханическое сопряжение в сердечной мышце.

    Гладкие мышцы

    Гладкие мышцы – это одноядерные клетки без поперечно-полосатой исчерченности. Процесс их сокращения отличается от остальных мышц. Миозин этих клеток прикреплен к клеточной мембране при помощи плотных телец. Миозин взаимодействует с актином, связанным с тропомиозионом. Однако, тропонина в гладких мышцах нет, а тропомиозин выполняет структурную функцию. Миозин может связываться с актином только в фосфорилированной форме. Фосфорилирование происходит специальным ферментом, зависимым от кальция. Источником кальция может служить ЭПР или межклеточное пространство. Сокращение клеток происходит достаточно медленно. Для прекращения сокращения достаточно дефосфорилировать миозин, что осуществляет специальный фермент.

    Несмотря на то что гладкие мышцы могут осуществлять достаточно слабые и медленные сокращения, они могут быть длительными и затрачивают мало энергии. Поэтому гладкие мышцы являются идеальными для образования стенов внутренних органов.

    Ссылка на основную публикацию
    Adblock detector