Что такое углеводы в пище

Что такое углеводы в пище

Гид по углеводам. Какова их функция в организме и чем простые углеводы отличаются от сложных? В какой еде содержатся — список продуктов, содержащих углеводы.

Углеводы — это одна из форм энергии, запасаемой растениями. Сладкие фрукты хранят энергию углеводов в виде фруктозы, обладающей быстрой скоростью усвоения, а овощи и крупы — в виде крахмала, относящегося к сложным углеводам. Отметим, что входящая в состав растений клетчатка — также углевод.

Избыток простых углеводов в еде приводит к набору лишнего веса и ряду нарушений обмена веществ (прежде всего, сахарному диабету), тогда как употребление большого количество продуктов с клетчаткой полезно для здоровья. Как научиться разбираться, какие углеводы — полезны, а какие — вредны?

// Что такое углеводы?

Углеводы входят в состав большинства продуктов и являются основном источником энергии в еде. В зависимости от количества структурных единиц они делятся на простые и сложные. Простые («быстрые») углеводы легко усваиваются и быстро повышают уровень сахара в крови — то есть, имеют высокий гликемический индекс. Их избыток в питании влечет ухудшение метаболизма и набор лишнего веса.

Сложные углеводы (крахмал, клетчатка) состоят из множества полисахаридов, включая от десятков до сотен структурных элементов. Пища с такими углеводами считается полезной. При переваривании она постепенно отдает свою энергию, обеспечивая долговременное чувство насыщения от еды. При этом клетчатка вообще не усваивается организмом — говоря простыми словами, обладает нулевой калорийностью.

На ограничении углеводов в питании строятся множество диет — например, низкоуглеводная диета для диабетиков или безуглеводная диета (кето диета) для похудения. При силовых тренировках для роста мышц, наоборот, рекомендуется употреблять повышенное количество углеводов — особенно в период углеводного окна для быстрого восполнения запасов гликогена.

// Углеводы — кратко:

  • ключевой компонент энергии в еде
  • в 1 г углеводов содержится 4 ккал
  • бывают простые (фруктоза, глюкоза) и сложные (крахмал, клетчатка, гликоген)
  • гликоген — основное топливо для мышц человека

В каких продуктах содержатся углеводы?

Углеводы содержатся практически во всех продуктах питания, за исключением продуктов животного происхождения. Лишь в молоке содержится небольшое количество углеводов — преимущественно, в виде лактозы. В состав растительных продуктов входят преимущественно сложные углеводы, а продукты с простыми углеводами чаще всего изготавливаются промышленным образом (начиная от белого сахара, заканчивая выпечкой).

// углеводов в 100 г // % быстрых углеводов
Сахар 100 г 100%
Мед 100 г 100%
Рис (до готовки) 80-85 г // Простые углеводы — список продуктов
  • сахар (включая мед, сладкие газировки типа колы и фруктовые соки)
  • джемы, варенья, мармелад и прочие сладости
  • хлеб и всевозможная выпечка из белой муки
  • большинство сладких фруктов
  • белый рис

Сложные углеводы — что это?

Сложные углеводы — это прежде всего крахмал (главный углевод растений), гликоген (основной источник энергии мышц) и пищевая клетчатка. Крахмал, по сути, является множеством молекул простых углеводов, крепко соединенных вместе. На расщепление продуктов со сложными углеводами организму необходимо как время, так и энергия. Именно поэтому сложные углеводы называются “медленными” и являются более полезными.

Главной функций сложных углеводов является как обеспечение процессов пищеварения (к примеру, клетчатка ответственна за нормальное движение перевариваемой еды по пищеводу), так и запасание энергии для физических активностей. Кроме этого, употребление в пищу клетчатки и прочих сложных углеводов нормализует уровень глюкозы в крови, что особенно важно при соблюдении диеты при сахарном диабете.

// Сложные углеводы — список продуктов

  • различные цельнозерновые крупы
  • макароны из твердой пшеницы
  • зеленые овощи
  • бурый рис
  • фасоль и прочие бобовые

Гликемический индекс еды

Чем проще состав конкретного углевода и чем меньше сахаридов он содержит в своей формуле, тем быстрее он переваривается и попадает в кровь, повышая уровень сахара. Такие продукты имеют высокий гликемический индекс. Сложные растительные углеводы (смесь крахмала и клетчатки), состоящие из сотен связанных структурных элементов, усваиваются намного медленнее.

// Полезные и вредные углеводы

Наиболее полезными для здоровья (и для фигуры) являются сложные углеводы овощей и прочих растений, прошедших умеренную термическую обработку. Затем идут различные злаки (начиная от булгура и прочих вариаций пшеницы, заканчивая кукурузой), цельнозерновые крупы (гречка, киноа) и фрукты, содержащие множество пищевых волокон и имеющие средний гликемический индекс.

Зерна, полностью очищенные от оболочки (например, белый рис, белая мука и различные продукты из них) относятся к источникам чистого крахмала и вредны для желающих похудеть. Употребление бурого риса обычно более полезно. Помните о том, что большинство продуктов с простыми углеводами (включая фруктовые соки) должны быть максимально ограничены в диете.

// Вредные углеводы // Полезные углеводы
Белый (шлифованный) рис Бурый рис
Фруктовые соки Овощи и низкоуглеводные фрукты
Белый хлеб Цельнозерновой хлеб
Картофельное пюре Гречневая крупа, киноа
Кукурузные хлопья Овсяная каша (не быстрого приготовления)

Вред безуглеводных диет

Существует множество диет, обещающих снижения веса за счет исключения углеводов — например, безуглеводная диета. Несмотря на то, что в краткосрочном периоде они могут быть эффективны для похудения, в конечном итоге такие диеты становятся вредными. В частности, кето-диета не должна соблюдаться дольше, чем 5-6 месяцев.

Полный отказ от содержащей углеводы пищи лишит организм большинства витаминов и минералов, что способно нанести вред здоровью — не говоря о том, что соблюдении белковой диеты при недостатке клетчатки способно привести к сложностям с пищеварением.

Нормы углеводов для набора массы

Мнение о том, что мышцы растут от употребления белка — ошибочно. В материале нормы БЖУ для набора массы мы упоминали, что при тренировках для роста мышц необходимо употреблять порядка 60% в виде углеводов. Именно углеводы являются основным источником энергии для мускулатуры, запасаясь в виде гликогена. Другими словами, на безуглеводной диете набрать массу нельзя.

Также атлетам важно помнить о теории углеводного окна — времени после тренировки, в течение которого мышцы более восприимчивы к энергии. В частности, употребление простых углеводов повышает уровень инсулина, открывая таким образом возможность клеток запасать энергию — на этом принципе строится работа гейнеров. В них используется мальтодекстрин — полисахарид с высокой скоростью усвоения.

// Польза углеводов для мышц:

  • гликоген — ключевое топливо для мышц
  • углеводы входят в состав гейнеров
  • повышают уровень инсулина

Углеводы — ключевой вид запасаемой в растениях энергии. В зависимости от количества структурных элементов они делятся на простые и сложные. Для определения вреда или пользы еды с углеводами используется гликемический индекс. Избыток фруктозы и глюкозы в еде приводит к нарушению обмена веществ (сахарному диабету) и к набору нежелательного веса.

  1. Glucose: Energy Sources, source
  2. Diet Percentages: Part 2, Lyle McDonald, source
  3. Low Carb Diet: Health Risks, source
Читайте также:  Гей парни с прессом

Углеводами называют органические соединения, поставляющие в организм необходимую для полноценной жизнедеятельности энергию. Они входят в состав каждой ткани и клеточных структур. На углеводы приходится примерно 2,7 процента от общей массы тела. Без них внутренние органы и системы не могут нормально функционировать. Поддерживать соотношение углеводов в организме становится возможным при сбалансированном питании, включающим в себя продукты, содержащие данные и другие полезные вещества.

Какую роль в организме выполняют углеводы?

Чтобы понимать, почему эти органические соединения настолько важны, необходимо изучить то, какие функции на них возложены. Углеводы, поступающие в организм вместе с пищей, оказывают следующий спектр действий:

  1. Поставляют в организм человека энергетические ресурсы. Это происходит за счет окисления соединения. В результате этого процесса один грамм углевода вырабатывает 17 килоджоулей или 4,1 калорию. Окисление сопровождается расходом либо гликогена (резервный запас углеводов), либо глюкозы.
  2. Принимают участие в образование различных структурных единиц. Благодаря углеводам, в организме строятся клеточные мембраны, вырабатываются нуклеиновые кислоты, ферменты, нуклеотиды и так далее.
  3. Формируют энергетические запасы для организма. Углеводы, принимая форму гликогена, откладываются в мышечных и прочих тканях, печени.
  4. Представляют собой антикоагулянты. Эти вещества разжижают кровь, а также препятствуют образованию тромбов.
  5. Входят в состав слизи, выстилающей желудочно-кишечный тракт, поверхности дыхательной и мочеполовой систем. Покрывая эти внутренние органы, слизь противостоит вирусным и бактериальным инфекциям, оказывает защиту от механических повреждений.
  6. Оказывают положительное воздействие не пищеварение. Углеводы стимулируют функцию пищеварительных ферментов, а, следовательно, улучшают пищеварительные процессы и качество усвоения питательных и ценных веществ, активизируют работу перистальтики желудка.

Кроме того, эти органические соединения повышают защитные функции организма, определяют группу крови, а также снижают вероятность развития онкологических патологий.

Виды углеводов

Органические вещества из группы углеродов делятся на две большие группы — простые и сложные. Первые еще называют быстрыми либо легкоусвояемыми, а вторые — медленными.

Простые углеводы

Отличаются простым составом и быстро усваиваются в организме. Такая особенность углевода приводит к резкому повышению глюкозы в крови. Реакцией организма на употребление простых углеводов становится крупный выброс инсулина — гормона, который ответственен за продуцирование поджелудочной железы.

Уровень сахара под воздействием инсулина снижается ниже стандартной нормы. Таким образом, человек, который недавно съел продукты, богатые простыми углеводами, уже довольно быстро начинает испытывать чувство голода. Кроме того, преобразование молекул сахара в подкожный жир происходит в соотношении один к двум.

Если злоупотреблять пищей, которая богата быстрыми углеводами, это приведет к следующим неблагоприятным последствиям:

  • постоянному ощущение голода и желаниюперекусить;
  • повреждению инсулином кровеносных сосудов;
  • быстрому износу поджелудочной;
  • повышению риска развития сахарного диабета.

Эти негативные воздействия стали главной причиной того, что данные углеводы стали называть вредными либо нежелательными.

Сложные углеводы

Медленные органические соединения, которыми являются клетчатка, гликоген, крахмал, действуют на организм совершенно иным образом. Вещества, входящие в данную группу, обладают сложным составом, а, значит, скорость их усвоения гораздо ниже, чем у быстрых. Данные соединения имеют высокую пищевую ценность и поэтому концентрация сахара практически не повышается, а, следовательно, человек длительное время чувствует сытость.

Поскольку концентрация сахара не слишком высокая, печень успевает его перерабатывать. Это значит, что он практически полностью преобразуется в энергетические ресурсы, а не откладывается в жировые отложения. Таким образом, сложные углеводы не приносят никакого вреда организму, то есть являются полезными.

Ежедневная потребность в углеводах

Суточная норма потребления органического источника энергии обусловлена возрастом, половой принадлежностью, весом, образом жизни и некоторым другим фактором. Чтобы вычислить дневную дозу углеводов, можно воспользоваться следующим расчетом:

  1. определить свою норму веса, то есть от роста отнять 100 сантиметров;
  2. умножить полученное число на 3,5.

Полученное число и станет дневной нормой потребления. Если рост равен 170 см, то количество углеводов, потребляемых в сутки должно составлять 245 грамм.

В каких продуктах содержатся простые углеводы?

К источникам быстрых углеводов относят:

  • натуральный мед, сахар, варенье;
  • сдобную выпечку, кондитерские изделия, батоны;
  • манную и рисовую белую муку;
  • макароны из белых сортов пшеницы;
  • соки и газированные напитки, а также сиропы;
  • сухофрукты и сладкие виды фруктов;
  • некоторые разновидности овощей.

Эти продукты относятся к не самым полезным.

Пищевые продукты Объем углеводов в 100 г (в граммах)
Сахарный песок 99,6
Карамель 88,1
Кукурузные хлопья 83,4
Мед 81,4
Вафли с начинкой из фруктового джема 80,7
Манная крупа 73,2
Мармелад 71,1
Варенье 69,9
Бублики 69,8
Финики 69,1
Крекеры 67,2
Солод ржаной 66,8
Изюм 64,9
Попкорн 62,9
Молочный шоколад 60,2
Макароны быстрого приготовления 56,9
Сдобная выпечка 55,2
Халва 54,3
Шоколадные конфеты 54,1
Венские вафли с карамельной начинкой 53,7
Картофельные чипсы 52,8
Песочное печенье 49,9
Печенье «Орешки» 49,3
Белый хлеб 48,9
Французская булка 47,4
Торты около 46
Кока-кола 42,3
Чернослив 39,8
Пончики 38,9
Яблочный пирог 38,3
Пирожное «Эклер» с кремовой начинкой 35,9
Алкогольные напитки (вина, вермуты и пр.) 20–35
Мороженое 24,9
Белый рис отварной 24,7
Пицца 24,4
Жареный картофель 23,2
Консервированная сладкая кукуруза 22,6
Гренки из белого хлеба 19,6
Хот-дог 19,4
Отварной картофель 16,8
Виноград 15,2
Картофельное пюре 14,3
Вареная свекла 10,2
Пиво 9,8
Апельсиновый сок 8,4
Абрикос 7,8
Тыква 7,4
Дыня 5,3
Арбуз 5,2
Вареная морковь 4,9

В каких продуктах содержатся сложные углеводы?

К источникам медленных углеводов относят:

  • хлебобулочные изделия из муку грубого помола;
  • различные виды грибов;
  • макароны из твердых сортов пшеницы;
  • злаковые и бобовые культуры;
  • большинство видов овощей;
  • разнообразная зелень;
  • несладкие фрукты.

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп [1] . Название этого класса соединений происходит от слов «гидраты углерода», оно было предложено Карлом Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́ — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных [1] .

Читайте также:  Ожог борщевиком симптомы

Содержание

Классификация [ править | править код ]

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Моносахариды [ править | править код ]

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения [2] , одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральный pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы [2] . Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза ( C 6 H 12 O 6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов [2] .

Дисахариды [ править | править код ]

Дисахари́ды (от др.-греч. δία ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных [3] .

Олигосахариды [ править | править код ]

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее [3] . Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях [3] .

Полисахариды [ править | править код ]

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков [4] .

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения [2] .

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л ( C 6 H 10 O 5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде [2] . Молекулярная масса 10 5 —10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины ( C 6 H 10 O 5)p, а при полном гидролизе — глюкоза [4] .

Гликоге́н ( C 6 H 10 O 5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 —10 8 Дальтон и выше [4] . В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы [2] . В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Читайте также:  Креатин считается допингом

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс [4] . Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу [2] .

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой [2] .

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид» [2] .

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе [2] .

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие) [2] .

Пространственная изомерия [ править | править код ]

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида, у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда [5] .

Биологическая роль [ править | править код ]

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так, целлюлоза является основным структурным компонентом клеточных стенокрастений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелетачленистоногих[1] .
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) [6] .
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6] .
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений [1] .
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/л глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез [ править | править код ]

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

C x ( H 2 O ) y + x O 2 → x C O 2 + y H 2 O , Δ H 0.001 <displaystyle <mathsf (H_<2>O)_+xO_<2>
ightarrow xCO_<2>+yH_<2>O, Delta H

В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

x C O 2 + y H 2 O → C x ( H 2 O ) y + x O 2 <displaystyle <mathsf <2>+yH_<2>O
ightarrow C_(H_<2>O)_+xO_<2>>>>

Обмен [ править | править код ]

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов [4] :

  1. Гидролиз (расщепление) в желудочно-кишечном трактеполисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники [ править | править код ]

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, содержит 65% фруктозы и 25-30% глюкозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Ссылка на основную публикацию
Adblock detector